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Fluid discharge resulting from puncture 
of spherical process vessels 

Peter W. Hart and Jude T. Sommerfeld 
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Abstract 

Risk analysis associated with incidents of puncture or rupture of process vessels generally 
requires estimation of actual or average fluid discharge rates resulting from such an 
incident. Most formulas developed to date for fluid discharge rates from vessels generally 
assume that the flow opening is located at the bottom of the vessel; this is undoubtedly due to 
the previously predominant interest in computing time requirements for gravity drainage of 
process or storage vessels. An accidental puncture, however, such as resulting from a moving 
vehicle. can occur at almost any elevation. Hence, from a risk analysis point of view, it would 
be useful to have formulas which would estimate fluid discharge amounts and rates from 
a flow opening at any arbitrary elevation. In this article, the differential and algebraic 
equations governing liquid discharge from an opening at any point on the surface of 
a spherical vessel are solved. This solution is then generalized in terms of dimension- 
less efflux times, liquid volumes and average release rates as functions of dimensionless 
elevations. 

1. Introduction 

The general subject of fluid flow rates from vessels, either storage or process, 
has posed numerous problems of engineering interest for many years now - to 
both practicing engineers concerned with production, inventory, safety and 
other aspects as well as to engineering professors as a source of practical 
mathematical material. Thus, papers [l-3] dealing with liquid efflux rates from 
some of the simpler and more common vessel shapes (e.g., vertical circular 
cylinders) date back to as early as 1949. These early efforts considered drainage 
through either a hole (e.g., orifice) or through a piping system, and for the most 
part addressed gravity flow only, ignoring any pressure head in the vessel. An 
exception here is the early work of Burgreen [3], as well as the much more 
recent work of Woodward and Mudan [4]. 
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Significant interest developed in this subject of tank drainage - perhaps 
at least partially from safety considerations - during the 1980s. Numerous 
articles appeared during this decade, many of them treating vessel shapes 
of more complex geometry, wherein the cross-sectional area formed by 
the liquid surface varies with the elevation of the latter. In one of the 
earlier such articles [5], formulas were summarized to compute the time 
requirements to empty vessels of four different shapes: vertical cylinder, 
cone, horizontal cylinder (with flat ends), and sphere. These expressions 
were all developed for drainage through a hole or orifice located at the 
bottom of the vessel. Later articles gave similar formulas for draining 
elliptical vessel heads often present at the bottom of vertical cylinders [6], 
elliptical saturator troughs (horizontal elliptical cylinders with flat ends) [7] 
such as employed in the textile finishing industry, and horizontal cylinders 
with elliptical dished heads or ends [8]. Some of these formulas are beginning 
to find their way into recent textbooks [9] on process safety. 

AIso in recent years the more complicated problem of vessel drainage 
through a piping system, originating at the bottom of the vessel, has been 
studied in considerable detail. Thus, one of the earlier articles [lo]. on this 
subject pertains to the simplest case of draining a vertical cylindrical tank 
(and hence of constant cross-sectional area) through such a piping system. 
Later works gave analogous formulas for draining spherical vessels [ll], 
conical tanks [12] and horizontal cylinders [13], all through a piping system. 
Analytical solutions were obtained in all of these cases, although the math- 
ematical expressions in the latter case include elliptic functions. A summary 
[14] of formulas to compute efflux times for drainage, either through a bottom 
drain hole or through a piping system originating at the vessel bottom, for 
about a dozen different vessel shapes was recently prepared. 

As indicated above, however, all of these cited works have been concerned 
with fluid discharge rates from the bottom of a vessel, such as in a drainage 
situation. Some years ago there was an article [15], in which an approximate 
method for estimating fluid level changes in vertical cylindrical tanks with 
a multiplicity of outlets (or leaks), of various sizes and at different elevations, 
was presented. Because of increasing concerns about safety and loss preven- 
tion, there exists today a need for accurate formulas to compute fluid discharge 
and vessel emptying rates for an opening of a given size and at an arbitrary 
elevation. Such a need may arise, for example, in analyzing an accident 
scenario resulting from a moving vehicle, e.g., a forklift truck, being driven 
into the side of a vessel and creating an aperture for fluid discharge at some 
elevation. Thus, in this article the material and mechanical energy baIance 
equations describing liquid efflux from a spherical tank under the influence of 
gravity are derived and solved. The solution is then generalized in terms of 
dimensionless variables, i.e., normalized efflux times, liquid volumes and aver- 
age release rates as functions of dimensionless elevations. 
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2. Balance equations 

The dynamic material balance for the liquid in the tank in this relatively 
simple case merely reduces 
negative of the output rate: 

dV 
dt=-cl 

or, more specifically: 

to the rate of accumulation being equal to the 

(1) 

(2) 

For the simpIer geometric vessel configurations, e.g., vertical cylinders, the 
cross-sectional area (A) of the liquid surface in the vessel is a constant 
quantity and not a function of the variable liquid level (h). This results in 
a very tractable, non-linear differential equation. 

The orifice equation is generally used to represent fluid discharge rates 
through openings in vessels, irrespective of their size, shape or location. Thus, 
the effluent liquid velocity (uz) is represented by the following equation: 

~2 = G&g(h - ho) (3) 

where C, is known as the orifice discharge coefficient; it generally is a function 
of the fluid velocity (as incorporated in a Reynolds number) and the down- 
stream (orifice)/upstream diameter ratio, although a constant value (between 
0.60 and 1.0) is typically assumed for a given application. As indicated in Fig. 1, 
h, is the vertical elevation of the hole above the bottom of the sphere, and h is 
the variable elevation of the liquid level in the vessel. Equation (3), which 
derives from the Bernoulli equation, essentially equates the potential energy 
of the liquid head in the tank, represented by (h-h,), with the kinetic energy 
of the outflowing liquid, with any friction losses accounted for by Co. 

3. Mathematical solution 

Insertion of eq. (3) into eq. (2) and rearrangement then leads to the following 
general expression to be integrated: 

1 

s 

A 
t= 

GA,fig ::J- 
dIz (4) 

h-ho 

in order to determine the time (t) required for the liquid level to fall from its 
initial elevation of h, to the elevation of the discharge hole h,. The area {A) 
formed by the liquid level in this case of a spherical vessel is given by 7cC2/4, 
where C is the length of the chord formed by the liquid level. It can simply be 
shown with the aid of the Pythagorean Theorem that this latter quantity is 
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Fig. 1. Sketch of a spherical vessel with a puncture hole in its side 
drainage. 

given by Z(hR- h ) ’ l”. Equation (4) then becomes: 

R 
t= 

GAO& s ht hR-hZ dh 

ho ,/h-h, 

and resulting liquid 

(5) 

as the specific expression to be integrated. 
The integration of eq. (5) can be found in most tables of integrals. In this 

particular case the lower limit of ho (corresponding to the elevation of the hole 
and thus the end of the discharge process) vanishes, and there results: 

When h,, = 0, as in conventional drainage from a hole or orifice in the bottom of 
a spherical tank, eq. (6) becomes: 

which is the same expression as presented by Foster [S] in his summary 
article. 
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4. Generalization of solution 

In order to impart greater generality and usefulness to eq. (6) above, let us 
convert that equation to dimensionless form by the introduction of several 
dimensionless variables. Specifically, let us define two dimensionless ele- 
vations, one corresponding to the initial liquid level in the spherical vessel: 

and the other representing the elevation of the discharge hole: 

x2 = ho/D (9) 

It is necessary to define two more dimensionless quantities. The first of these is 
the dimensionless 

x3=&,jD 

and the other is a dimensionless time, given by the following expression: 

After insertion of the dimensionless quantities from eqs. (8)-(11) into eq. (6), 

size of the flow opening, represented as follows: 

(10) 

(11) 

the latter equation can be written in the following form: 

Y= 15; x2 [5x1+loxz-3x:-4xlx2-8x~]J~ 
0 3 

(12) 

There are four independent parameters appearing in eq. (12) - x1, x2, x3 and 
Cc, in addition to the dimensionless dependent variable of the time (Y) re- 
quired for vessel drainage. A commonly assumed value for the orifice discharge 
coefficient (C,) is 0.60. Thus, for a given dimensionless opening size (x3), one 
can construct a graph which is based upon eq. (12) and which depicts the 
behavior of the time required for complete drainage of the vessel from an initial 
dimensionless liquid level of x1 down to the dimensionless elevation of the 
opening. Figure 2 represents such a graph for fixed values of C, =0.60 and 
x3 = 0.005; the latter value might correspond, for example, to a hole 5 cm in 
diameter in the side of a spherical vessel with a diameter of 10m. This graph 
shows how the time required for tank drainage increases with the amount of 
liquid contained in the tank (as measured by x1), as well as with increased 
elevation of the drainage hole (LQ); this latter effect undoubtedly results from 
the reduced hydrostatic head as x2 increases. The crossover in the curves for 
the higher values of x2 ( > 0.30) is interesting. 

The actual amount of fluid released to the environment is generally of 
considerable interest in any accident scenario. Again because of the more 
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Fig. 2. Dimensionless time (Y) for complete drainage of a spherical vessel as a function of 
dimensionless initial liquid elevation (x1) and elevation (x2) of the drainage hole. x3 =0.005; 
C, = 0.60. 

complex geometry of spheres, the calculation of such amounts is somewhat 
more complicated than for vessels of constant cross-sectional areas, such as 
vertical circular cylinders. None the less, formulas do exist for calculating the 
volume of spherical segments. Thus, the volume (V) of a segment h units high 
of a sphere with a diameter of D is: 

(13) 

Recognizing that the complete volume (V,) of a sphere of diameter D is given 
by V,=7-cD3/6, the segmental volume from eq. (13) can be normalized to the 
complete sphere volume to yield a dimensionless segmental volume: 

:=x2 [3-22x] 
s 

(14) 

where x = h/D and corresponds to any liquid elevation. 
The total amount of fluid released in a given incident will then be the 

difference in volumes corresponding to the initial spherical segment and that 
corresponding to the final spherical segment at the elevation of the discharge 
hole. Denoting this fluid volume, dimensionless and normalized to V,, by U, we 
have: 

u=x: [3-ZXJ-x$[3-22x2] (15) 

Figure 3 then shows how this dimensionless volume U varies with the two 
dimensionless elevations - x1 and x2. Not surprisingly, U increases mono- 
tonically with increasing x1 and decreases monotonically with increasing x2, 
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Fig. 3. Dimensionless volume (U) of liquid stored in a spherical .vessel between some 
dimensionless initial liquid elevation (x1) and elevation (x2) of a drainage hole. 

and with the greatest slopes occurring near the middle bulge (X 1 = 0.5) of the 
spherical vessel. 

The curves of Fig. 3 are based solely upon the static geometric calculations 
of eqs. (B-(15), and are thus valid for any spherical vessel. That is, the volume 
of a spherical segment with two horizontal bases at arbitrary elevations can be 
readily computed from these equations. Flow dynamics add another dimension 
to the problem. Consider the related task of determining the time required for 
the spherical vessel to drain from some initial liquid level elevation of hl down 
to some intermediate level of hi through an opening of diameter d located at 
a lower elevation of hZ. In this case the volume drained will still be given by 
eqs. (13)-(15), evaluated for x1 and xi= hi/D; but determination of the time 
requirement here necessitates two evaluations of drainage times from eq. (6): 

t(h, + hi)=t(h, --* ho)-t(hi + ho) (16) 

Alternately, the above calculations can be done in dimensionless form via two 
applications of eq. (12). 

Some representative volumetric rate of fluid discharge from the vessel is 
often needed in the analysis of puncture accident scenarios. According to 
Woodward and Mudan [4], a reasonable such rate to use is roughly midway 
between the initial and average discharge rates. The initial rate is readily 
obtained from eqs. (l)-(3), with h set equal to hl. Evaluation of the average 
rate, however, requires integration of the differential balance equations, as 
performed in this article. Specifically, this average rate is given by the total 
volume of liquid contained in the spherical segment (between h, and h,) of 
interest divided by the time required to drain this liquid through the puncture 
hole. In dimensionless form, this average rate can be expressed as follows: 

w= U/Y (17) 
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A plot of W versus x1 for various values of x2 (<xl) is shown as Fig. 4; this 
figure, like Fig. 2, is for values of C, = 0.60 and x3 = 0.005. Figure 4 is somewhat 
similar to Fig. 3 for the dimensionless volume U, in that the average dimension- 
less discharge rate (W) generally increases with increasing x1 and decreases 
with increasing x2. 

5. Example calculations 

Let us illustrate the calculation procedure outlined above with the following 
example. We consider a spherical storage vessel, vented to the atmosphere, 
with a diameter of 10m and initially filled with a corrosive solution to a depth 
of 7m. A forklift truck is accidentally driven into this vessel, creating a punc- 
ture hole of about 5cm in diameter 2m above the vessel bottom. Assuming 
uncontrolled release of fluid from this vessel down to the puncture location, it 
is desired to determine how much fluid is released over what period of time, and 
hence the average discharge rate. A constant orifice discharge coefficient of 
C, =0.60 is to be used for these calculations. 

The dimensionless elevations are readily computed as x1 = 0.70 and x2 = 0.20. 
Similarly, the dimensionless orifice size (x3) is found to be 0.005. For this 
particular configuration, the factor of 8/(15C&) is then computed as 35,656. 
Inserting these various values into eq. (12), we find a dimensionless drainage 
time of Y=79,200. With g-9.807 m/s’ and R= lOm, this dimensionless drain- 
age time translates to a value of 56,550 s. Similarly, from eq. (15) the total 
dimensionless volume (U) of fluid drained over this time interval is 0.680 (of the 
complete volume of a sphere with a diameter of 10 m). Thus, this dimensionless 
volume corresponds to a fluid volume of 356m3. Lastly, the dimensionless 

g 14- F 
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Fig. 4. Dimensionless average rate ( W= U/Y) of discharge from a 
tion of dimensionless initial liquid elevation (x1) and elevation 
x3 = 0.005; C,, = 0.60. 

spherical vessel as a func- 
(n,) of the drainage hole. 
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average draining rate from eq. (17) is 8.59 x 10e6, while the actual average 
draining rate is (356 m3/56,550 s) = 0.00629 m3/s = 22.7 m3/h. This latter quantity 
compares with an initial discharge rate, as evaluated from eqs. (l)-(3) with 
h = 7.0 m, of 42.0 m3/h. The middle value between these two discharge rates is 
then about 32.3 m3/h. 

6. Discussion 

While the mathematical analysis and derivation presented above are rigor- 
ous, several of the assumptions made in the early formulation of this problem of 
drainage from a ruptured sphere may be questioned. Thus, the selection of 
a given value for the orifice discharge coefficient (C,) and the assumption of 
a constant value for this coefficient merit some attention. As can be found in 
any standard text on the unit operations of chemical engineering [16], this 
discharge coefficient varies with the Reynolds number for the fluid stream 
flowing through the opening as well as with the orifice diameter/upstream 
diameter ratio. It is well known 1161 that 0.61 is a reasonably constant value for 
the discharge coefficient of a sharp-edged orifice when the Reynolds number 
through the orifice exceeds 30,000, irrespective of the ratio of the diameters. If 
the orifice is not sharp-edged but rounded at the upstream face (highly unlikely 
in the event of a puncture hole), the discharge coefficient has a value varying 
from 0.70 to 0.88. Given that any aperture accidentally created in the side of 
a process vessel is likely to be highly jagged in nature, a value of 0.61 for Co 
would appear to be a high-side estimate_ The value of 30,000 is not a terribly 
large value for the Reynolds number, and hence the assumption of a constant 
value for Co should be valid for the vast majority of all fluids with viscosities 
close to water; certainly, exceptions here might include ethylene glycol and 
kerosene. Also, there might be deviations in the value of C, as the drainage of 
fluid neared its termination, but such deviations would impact upon only 
a small fraction of the total amount of fluid discharged. 

One method of addressing the problem of a variable value of Co would be to 
break up the problem into several segments for values of the liquid elevation 
(h), and to employ different values of the discharge coefficient for these various 
segments. This approach would then require successive application of eqs. (6) 
and (16) to these segments, for hl, hT, h3 . . . Admittedly, this procedure could 
shortly become very cumbersome, and one might be better advised to employ 
some computerized numerical integration scheme to solve the original differ- 
ential equation. 

Secondly, estimation of the actual flow area (A,) associated with a puncture 
hole could prove somewhat difficult. One method for estimating such a punc- 
ture area might derive from mechanical calculations involving the vessel shell 
thickness and mass and velocity of the moving object, among other variables. If 
puncture by a forklift truck is indeed the concern, some estimate of the opening 
might be made from the cross-sectional area of a truck prong. In any event, 



304 P. W. Hart and J.T. SommerfeldlJ. Hazardous Mater. 33 (1993) 295-305 

there is no requirement in this analysis that the puncture hole indeed be 
circular, as eq. (10) might suggest. Given an estimate of the flow area (A,), an 
equivalent diameter (d,) for the discharge opening can always be readily 
computed if dimensionless charts are to be used. 

Lastly, there is the question of an internally pressurized fluid, which this 
article does not specifically address. In the simpler case wherein this internal 
pressure is constant, such as resulting from a tank pressure controller or the 
vapor phase over a volatile liquid, this constant tank pressure head may simply 
be added to the hydrostatic liquid head, 2g(h --ho), in eq. (3); Woodward and 
Mudan [4] employed this procedure to develop equations for calculating liquid 
and gas discharge rates through holes in the bottom of process vessels of 
different shapes. If this tank pressure head decreases as the vessel drains (as in 
the case of an unvented vessel), however, the governing differential equation 
in all but the simplest geometric configurations (vertical cylindrical) becomes 
quite cumbersome. 

7. Conclusions 

The engineering equations describing fluid discharge from a hole of arbit- 
rary size and at any Iocation on a spherical vessel can be readily solved; the 
vessel can be of any diameter and initially filled to an arbitrary liquid level. 

The mathematical solution obtained to these equations can be generalized in 
terms of dimensionless variables. This solution can be useful in risk analyses of 
scenarios associated with accidental puncture of spherical storage or process 
vessels, such as might result from impaction by a moving vehicle, e.g., a forklift 
truck. Specifically, this solution allows computation of the amount of fluid 
discharged to the environment, duration of such fluid discharge and average 
discharge rate over this time period. 

Nomenclature 

cross-sectional area of the liquid surface in the vessel at any time, m2 
cross-sectional area of the hole for liquid Aow out of the vessel, m2 
length of chord formed by liquid level in vessel, m 
orifice discharge coefficient 
diameter of spherical vessel, m 
diameter of the hole for liquid flow out of the vessel, m 
acceleration due to gravity, m/s2 
elevation of liquid level in vessel at any time, m 
intermediate elevation of liquid level in vessel, m 
elevation of hole above the bottom of the spherical vessel, m 
elevation of initial (t = 0) liquid level in vessel, m 
liquid volumetric flow rate out of the vessel, m”/s 
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R 
t 
u 
V 
u2 

W 
x 
xi 
Xl 
x2 

x3 

Y 
rl 

radius of spherical vessel, m 
time, s 
dimensionless volume of liquid initially contained in vessel 
liquid volume in the vessel, m3 
linear velocity of liquid out of the vessel, m/s 
dimensionless average rate of vessel drainage (=U/Y) 
dimensionless elevation of liquid level (= h/D) 
dimensionless elevation of intermediate liquid level (= hi/D) 
diensionless elevation of initial liquid level (= h,/D) 
dimensionless elevation of hole in vessel (= h,/D) 
dimensionless inside diameter of hole in vessel (= d/D) 
dimensionless time for complete drainage of vessel (= t(2g/D)““) 
number pi (3.14159 . . . . ) 
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